Order Today to Save $50 & get Free Shipping on Geno 2.0 Next Generation!     Buy Now >
  1. Skip to navigation
  2. Skip to content
Books:Science and Space:Science:The God Species

The God Species

$25.00 Sale Price:   $17.50

Price: $25.00 Sale Price:   $17.50

Item# :6200891

Qty: This item is out of stock

We humans are the God species, both the creators and destroyers of life on this planet. As we enter a new geological era—the Anthropocene—our collective power now overwhelms and dominates the major forces of nature.

But from the water cycle to the circulation of nitrogen and carbon through the entire Earth system, we are coming dangerously close to destroying the planetary life-support systems that sustain us. In this controversial new book, Royal Society Science Books Prize winner Mark Lynas shows us how we must use our new mastery over nature to save the planet from ourselves.

Taking forward the work of a brilliant new group of Earth-system scientists who have mapped out our real "planetary boundaries," Lynas draws up a radical manifesto calling for the increased use of environmentally-friendly technologies like genetic engineering and nuclear power as part of a global effort to use humanity's best tools to protect and nurture the biosphere.

Ecological limits are real, but economic limits are not, Lynas contends. We can and must feed a richer population of nine billion people in decades to come, while also respecting the nine planetary boundaries—from biodiversity to ocean acidification—now identified and quantified by scientists.

Ripping up years of environmental orthodoxy, he reveals how the prescriptions of the current green movement are likely to hinder as much as help our vitally needed effort to use science and technology to play God and save the planet.

  • Hardcover
  • 256 pages
  • 6" x 9"
  • © 2011

Mark Lynas has worked for nearly a decade as a specialist on climate change, and is author of three books on the subject: High Tide: News from a Warming World (2004), Carbon Calculator (2007), and Six Degrees: Our Future on a Hotter Planet (2007).

High Tide was longlisted for the Samuel Johnson Award for Non-Fiction and short-listed for the Guardian First Book Award. Six Degrees was long- listed for the Orwell Prize in 2008 and won the Royal Society Prize for Science Books in the same year. The book has now been translated into 22 languages around the world.

Six Degrees is published in the US by National Geographic, which has also made a television documentary based on the book and broadcast on the National Geographic Channel internationally.

Lynas writes a fortnightly column for the New Statesman magazine, and is a regular contributor to the Guardian. He is also a Visiting Research Associate at Oxford University's School of Geography and the Environment.

Three large rocky planets orbit the star at the center of our solar system: Venus, Earth, and Mars. Two of them are dead: the former too hot, the latter too cold. The other is just right, and as a result has evolved into something unique within the known universe: It has come alive. As Craig Venter and his team of synthetic biologists have shown, there is nothing chemically special about life: The same elements that make up our living biosphere exist in abundance on countless other planets, our nearest neighbors included. But on Earth, these common elements—carbon, hydrogen, nitrogen, oxygen, and many more—have arranged themselves into uncommon patterns. In the right conditions they can move, grow, eat, and reproduce. Through natural selection, they are constantly changing, and all are involved in a delicate dance of physics, chemistry, and biology that somehow keeps Earth in its Goldilocks state, allowing life in general to survive and flourish, just as it has done for billions of years.

Why the Earth has become—and has remained—a habitable planet is one of the most extraordinary stories in science. While Venus fried and Mars froze, Earth somehow survived enormous swings in temperature, rebounding back into balance whatever the initial cause of the perturbation. Venus suffered a runaway greenhouse effect: Its oceans boiled away and most of its carbon ended up in the planet’s atmosphere as a suffocatingly heavy blanket of carbon dioxide. Mars, on the other hand, took a different trajectory. It began life warm and wet, with abundant liquid water. Yet something went wrong: Its carbon dioxide ended up trapped forever in carbonate rocks, condemning the planet to an icy future from which there could be no return.1 The water channels and alluvial fans that cover the planet’s surface are now freeze-dried and barren, and will remain so until the end of time.

Part of the Earth’s good fortune obviously lies in its location: It is the right distance from the sun to remain temperate and equable. But the distribution of Earthly chemicals is equally critical: Our green- house effect is strong enough to raise the planet’s temperature by more than 30 degrees from what it would otherwise be, from −18 ̊C to about 15 ̊C today on average—perfect for abundant life—while keeping enough carbon locked up underground to avoid a Venusian-style runaway greenhouse. Ideologically motivated climate-change deniers may rant and obfuscate, but geology (not to mention physics) leaves no room for doubt: Greenhouse gases, principally carbon dioxide (with water vapor as a reinforcing feedback), are unquestionably a planet’s main thermostat, determining the energy balance of the whole planetary system.

This astounding four-billion-year track record of self-regulating success makes the Earth unique certainly in the solar system and possibly the entire universe. The only plausible explanation is that self-regulation is somehow an emergent property of the system; negative feedbacks overwhelm positive ones and tend to push the Earth toward stability and balance. This concept is a central plank of systems theory, and seems to apply universally to successful complex systems from the internet to ant colonies. These systems are characterized by near-infinite complexity: All their nodes of interconnectedness cannot possibly be identified, quantified, or centrally planned, yet their product as a whole tends toward balance and self-correction. The Earth that encompasses them is the most complex and bewilderingly successful system of the lot.